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Abstract

We shall present some relations between consistency and reflection principles which
explain why is Gödel’s incompleteness theorem wrongly used to argue that thinking
machines are impossible.

1 Introduction

Since its publishing Gödel’s incompleteness theorem attracted a lot of atten-
tion among philosophers. In 1959 Lucas [8] presented an argument that this
theorem implies that human thinking is essentially different from what any
machine can do. This means that the ultimate goal of artificial intelligence
cannot be achieved. The argument is roughly the following. A machine (nowa-
days we would rather say “a computer”) behaves according to fixed rules (a
program), hence we can view it as a formal system. Applying Gödel’s theorem
to this system we get a true sentence which is unprovable in the system. Thus
the machine does not know that the sentence is true while we can see that it
is true.

The spectrum of attitudes of various people to this argument was nicely char-
acterized by Hofstadter [5, page 472]: “Some size onto it as a nearly religious
proof of the existence of souls, while others laugh it off as being unworthy of
comment”. Lucas’s argument has been criticized several times. In particular, in
his famous book [5] Hofstadter analyzed it in details and gave several founded
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counterarguments. Still in 1989 and 1994 Penrose published two books [9,10]
where he defended the thesis of Lucas. 2 He went even further and concluded
that there must be some physical phenomena that our brains make use of
and which we do not know yet. Especially in the second book he analyzed
the argument in details and took pains to consider and dismiss many possible
counterarguments.

It seems that most logicians agree on that Gödel’s theorem is not relevant
to the question whether an intelligent machine can be constructed. Curiously
enough, they do not agree so well on what is wrong with Lucas’s argument.
In his crushing review of the second Penrose’s book, Putnam [12] argues,
loosely interpreting his argument, that a computer program simulating human
intelligence must be extremely complex, thus we cannot completely appreciate
it and produce a true independent sentence. However, one can argue that
already some present programs and chips are extremely complex and nobody
can be sure that they do not contain a serious bug. Still we (more precisely
those who designed them) know what they were intended for. Then, assuming
that they were produced correctly and they are supposed to prove sentences,
we can easily produce an unprovable true sentence.

The main argument of Hofstadter is based on the distinction between the
system to which we apply Gödel’s theorem and the system in which we perform
the argument. This is the basic distinction between a theory and metatheory in
logic, which is inevitable, if we do not want to run into trivial inconsistencies. A
person reasoning about a machine knows the machine completely, thus there
is nothing surprising in being able to produce something that the machine
cannot prove. This is completely symmetric with respect to interchanging the
roles of the mind and the machine, therefore we cannot conclude that they are
different. It is not possible to produce such statements, however, if a subject
reasons about itself.

Still, our personal experience seems to suggest that we can somehow “step
out” and avoid Gödel’s theorem. In order to explain this, one could refer to
the tremendous complexity of the human mind, to its inconsistency, vagueness
and possibly other deficiencies. But let us consider just mathematical thinking.
Actually Gödel’s sentence is not just some nonsensical statement, even if it
is constructed for a very complex system. It expresses the consistency of the
system, which is a clear mathematical statement. In mathematics people do
also a lot of mistakes, but, in principle, their mathematical reasoning is exact.
Thus vagueness and inconsistency of human thinking does not explain it. The
argument using complexity can be rejected as well, since the consistency of
the system depends only on the mathematical assumptions that people use,
not on the amount and complexity of the results they use. As far as the basic

2 Recently he published another one [11] which I had not chance to look at.
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assumptions are concerned, almost all mathematicians use just a part of ZFC
and all the axioms of ZFC (more precisely, axiom schemas) can be written
on a single page. To produce an independent sentence for a human mind or a
computer, we do not have to analyze it in its whole complexity, we only need
to know the set theoretical assumptions that it uses.

This shows that the relevant question is what mathematical statements we are
willing to accept as intuitively true. This question has been considered by many
logicians. It has been studied quite formally in proof theory and systems which
should capture our mathematical assumptions have been proposed, [2,3,6].
Naturally, the incompleteness phenomenon plays a key role also there. Hilbert
[4] proposed to develop all mathematics using only finite means. It is very
difficult to characterize such finitism. Kreisel [6] argued that “if the notion
of finitist proof is capable of formalization at all, its proof predicate must be
not recognizable as such by finitist means”. Let us note that the argument
demonstrating this thesis refers to Gödel’s theorem in a similar same way as
Lucas’s.

In this note I will concentrate on the phenomenon, or rather illusion, that we
can always extend our assumptions by a true independent sentence. This is
something that should be carefully analysed independently on ones attitude
to Lucas type arguments. (If, for instance, one believes that human mind is
superior to any artificial device, because of some unknown phenomena, one
can get at least some hints about the new phenomena in this way.) My expla-
nation will be very simple: when arguing that the new system is consistent,
we use unconsciously a stronger assumption. Still, I think that writing down
explicitly the assumptions and relationships between them will help to clarify
the subject.

2 Preliminaries

Our base theory, denoted by B, will be IΣ1. This particular choice of a theory
is not essential, one can take, for instance PA (Peano arithmetic), or IΣ0+Exp
(with some arguments slightly modified). If not stated otherwise, all theorems
are claimed to be provable in B.

By a theory we mean any recursively axiomatizable set of sentences in some
language. In this paper we shall consider only extensions of B. If a theory
is given by an infinite set of axioms, the way it is presented may influence
provability of its consistency etc. Thus to be quite precise we shall identify a
theory with an index of a recursively enumerable set.

3



For a natural number n, we denote by n the numeral n, i.e. a suitable closed
term representing n; the standard approach is to take the term Sn(0), where
S is the successor function. The gödel number of a formula ϕ will be denoted
by dϕe; for a formula ϕ with a free variable x, we denote by dϕ(ẋ)e the
gödel number of ϕ with the free variable replaced by the numeral representing
x. This is a formalization of the function n 7→ gödel number of ϕ(n). This
function cannot be expressed by an arithmetical term in the usual language of
arithmetic, but, for sake of simplicity of notation, we shall use it in formulas
as a term. ⊥ denotes a suitable contradiction, say 0 = 1. As usual, T + ϕ
denotes the theory T extended by the axiom ϕ.

We shall denote by PrfT (x, y) a natural formalization of the relation “x is a
proof of y in T”. PrT (y) denotes ∃x PrfT (x, y), i.e. the provability predicate of
T . The naturalness means that the fact that the proof predicate is closed under
logical rules can be proved in B. In order to reduce the number of parentheses
we shall abbreviate the formula PrT (dϕe) by PrT dϕe. The formalization of
the consistency of T will be denoted by ConT , it is the formula ¬PrT d⊥e.

The Rosser sentence RoT for T is the negation of a sentence ρ obtained by
the following diagonalization

ρ ≡ ∃x(PrfT (x, d¬ρe) ∧ ∀y < x ¬PrfT (y, dρe)).

(Sometimes ρ itself is called the Rosser sentence.)

ω-consistency of T , denoted by ω-ConT , is the schema (therefore we use bold-
face letters)

PrT d∃x ϕ(x)e → ∃x ¬PrT d¬ϕ(ẋ)e

for every formula ϕ(x) with only x free. This schema restricted to primitive
recursive formulas is 1-consistency and it will be denoted by 1-ConT . Here we
shall identify primitive recursive formulas with those which are ∆1 provably
in B.

The reflection principle for T , denoted by RfnT , is the schema PrT dϕe →
ϕ for every sentence ϕ in the language of T . The reflection principle for T
restricted to a class of sentences Γ will be denoted by denoted by Γ-RfnT .
The uniform reflection principle for T , denoted by RFNT , is the schema
∀x (PrT dϕ(ẋ)e → ϕ(x)) for every sentence ϕ in the language of T . The uniform
reflection principles restricted to classes of formulas Σn and Πn are equivalent
to sentences (namely, the uniform reflection for the corresponding universal
formula), therefore they will be treated as such.
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We shall use some well-known results on reflection principles.

Lemma 1 (see [13]) (1) Σ1-completeness of B: ϕ → PrBdϕe, for every Σ1

sentence ϕ;

(2) ConT ≡ Π1-RfnT ≡ Π1-RFNT ;

(3) 1-ConT ≡ Σ1-RfnT .

Let us recall that Gödel’s first incompleteness theorem asserts that for every
ω-consistent T , there is an independent sentence. The sentence γ is defined
by γ ≡ ¬PrT dγe. The ω-consistency is needed only to prove that ¬γ is un-
provable, and, in fact, one needs only 1-consistency, while for unprovability of
γ the plain consistency suffices. The second incompleteness theorem extends
this by showing that γ is equivalent to ConT . This can be expressed formally
by

ConT → ConT+¬ConT ; (1)

1-ConT ` ConT+ConT . (2)

Rosser sentence for T is clearly implied by γ, thus (1) implies that it is not
provable in T assuming T is consistent. Moreover ¬RoT is unprovable using
only ConT ; formally

ConT → ConT+RoT . (3)

Note that Rosser sentence, the consistency and Σ1 reflection are of increasing
strength and this hierarchy can be extended by taking Σn reflection schemas
for n = 2, 3, . . ..

3 The illusion of perpetual adding consistency

Gödel’s theorem implies that the rule

from ConT deduce ConT+ConT (4)

is not consistent with any sufficiently strong theory S. More precisely, we
need that S proves the consistency of some theory for which it proves Gödel’s
theorem . This is true, say, for IΣ1, which proves ConIΣ0+Exp, but also for
weaker theories. To prove this claim, let T0 be a theory for which we have
S ` ConT0 . Take T = T0 + ¬ConT0 ; it is consistent by Gödel’s theorem .
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But T + ConT is not consistent, since T proves that a subtheory of T is not
consistent. Let us stress that (4) has the weakest possible form, since we apply
it only for explicit theories.

By the same argument such a rule is inconsistent also for stronger sentences.
(Note, however, that it does not make sense for schemas, such as RfnT , since
the corresponding rule would have infinitely many assumptions.) Namely, in
case of Con we have derived a contradiction using (1). To prove that the above
rule is contradictory for Σn-RFNT , we shall check that the corresponding
sentence is true for Σn-RFNT .

Lemma 2 Σn-RFNT → Σn-RFNT+¬Σn-RFNT
.

PROOF. Assume Σn-RFNT . We need to prove, for a Σn formula ϕ(x),

∀x (PrT d¬Σn-RFNT → ϕ(ẋ)e → ϕ(x)).

Let x be given. Instead of PrT d¬Σn-RFNT → ϕ(ẋ)e we shall use a weaker
assumption by taking only one special case of Σn-RFNT , namely

PrT d¬(PrT dϕ(ẋ)e → ϕ(ẋ))→ ϕ(ẋ)e.

The formula within the outer d e reduces (using propositional calculus) so that
we get

PrT dPrT dϕ(ẋ)e → ϕ(ẋ)e.
By Löb’s theorem (cf. [13]), it implies PrT dϕ(ẋ)e. Now we can apply our
assumption Σn-RFNT and conclude ϕ(x) as required. 2

Let us analyze now the intuitive argument that we can add the consistency
ConT+ConT when we already know ConT . The usual argument goes roughly
as follows:

Suppose ¬ConT+ConT , i.e. T proves ¬ConT . Since T is true, there is an
actual proof of contradiction from the axioms T . But this is in contradiction
with our assumption ConT .

It is clear that this argument uses an additional assumption that T is “true”,
whatever it means. This word appears in Lucas’s argument [8, p. 117], while
Penrose uses “sound” [10, pp. 75,94]. The way these words are used shows
that their meaning is some version of the reflection principle for T . The weak-
est reflection principle (of those we have considered) which suffices for this
argument is Σ1-RfnT . Since Σ1-RfnT is equivalent to 1-ConT, the argument
is simply showing a half of Gödel’s theorem , as expressed by the formula (2).
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The fact (2) does not suffice to continue with adding more and more consis-
tencies, but it is not difficult to prove a slightly stronger statement (we shall
prove it formally below)

1-ConT ` 1-ConT+ConT . (5)

This explains the illusion that we have the power to add consistencies for
ever. If we start with some theory T0 and assume 1-ConT0 , then we can
prove ConT0 , ConT0+ConT0

, ConT0+ConT0+ConT0
, . . . , but, of course, using the

assumption 1-ConT0 which is stronger than all these statements. I conjecture
that assuming a little more, namely Σ1-RFNT , we can extend this process to
transfinite autonomous progressions (in the sense of [1]).

A possible source of misunderstanding may also be the fact that similar im-
plications hold on various levels. For instance (3) is of this form. It enables us
to iterate Rosser sentences, assuming the consistency of the initial theory. So
the difference between the Rosser sentence, consistency (the Gödel sentence),
ω-consistency and other possible variations is important, if we want to avoid
false conclusions. This distinction is often disregarded in informal descriptions
of Gödel’s theorem .

Let us state and prove such implications for some principles that we have
considered. The general form of these statements is

XT → XT+YT (6)

where X is the stronger and Y is the weaker principle. It is plausible that
similar relations hold for other principles.

Proposition 3 (1) ConT → ConT+RoT ,

(2) Σn+1-RFNT → Σn+1-RFNT+Σn-RFNT
,

(3) 1-ConT ` 1-ConT+ConT ,

(4) ω-ConT ` ω-ConT+ConT .

PROOF. (1) is just a part of Rosser’s theorem. (2) is proved in [13, Cor.
4.1.12].

To prove (3), first observe that 1-ConT implies ConT . We shall use the
fact that 1-ConT is equivalent to Σ1-RfnT . Assume Σ1-RfnT and suppose
PrT+ConT dϕe for some ϕ in Σ1. This means PrT dConT → ϕe. The sentence
inside is also Σ1, hence we get ConT → ϕ. Now, using ConT we get ϕ.
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To prove (4) assume ω-ConT and suppose PrT+ConT d∃xϕ(x)e. This means
PrT dConT → ∃xϕ(x)e. We shall rewrite this formula as

PrT d∃x(PrfT (x, d⊥e) ∨ (ConT ∧ ϕ(x)))e.

Applying ω-consistency of T to this formula we get

∃x¬PrT d¬PrfT (ẋ, d⊥e) ∧ ¬(ConT ∧ ϕ(ẋ))e. (7)

Fix such an x. The consistency of T implies ¬PrfT (x, d⊥e). By Σ1-completeness
we get PrT d¬PrfT (x, d⊥e)e. Thus (7) reduces to

∃x¬PrT d¬(ConT ∧ ϕ(ẋ))e.

The formula inside is equivalent to ConT → ¬ϕ(ẋ), thus the whole formula is

∃x¬PrT+ConT d¬ϕ(ẋ)e.

This proves that ω-consistency holds for T + ConT . 2

4 Conclusions

If we always justify a weaker principle by a stronger one, we are inevitably lead
to so strong principles their truth is not evident to us. Consider for instance
the hierarchy of the reflection principles Σn-RFNT . The next step after all
these principles is the uniform reflection principle for all arithmetical formulas
Σ1

0-RFNT . In order to state this principle we need to be able to define the truth
for all arithmetical formulas, which cannot be done in first order arithmetic.
We need at least a fragment of the second order arithmetic. This is a big step.
Natural numbers seem much more accessible to our intuition than subsets
of natural numbers. The problem of the truth of the Continuum Hypothesis
and several other problems about the continuum have not been resolved yet.
Though these undecidable sentences are not directly linked with the reflection
principle, it shows that we cannot be so confident anymore. As this is only a
tiny part of the Zermelo-Fraenkel set theory, most people would go on, but at
some stage everybody has to admit that the next principle is less likely to be
true than the previous ones.

One of the arguments that Penrose uses is that whenever we accept T as our
belief we accept also the soundness of T . He does not specify what exactly
he means by the soundness. The only way to state it precisely that I see
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is to use some reflection principles. There is no theory which is closed off
with respect to extensions by some reflection principle. As explained above
we can expand T by taking stronger and stronger reflection principles, but at
some point the principles will become too strong to be considered as obvious
extensions of T . In the same way as people disagree on which set theory is
safely consistent, people may disagree what extensions of an accepted theory
T should be considered safe.

Thus it seems that our mathematical assumptions have a hierarchical structure
like any other knowledge that we use. On the bottom there are statements that
we believe are true without any doubts, while on the top there are doubtful
statements which we have not been able to refute yet. We use less secure
knowledge as a heuristic to guess the truth where we are not able to deduce it
from more secure knowledge and data. (In our real life we mostly trust to our
vision; when we cannot see the thing ourselves we may trust to somebody’s
report on it etc.) There are only a few, rather extravagant, logicians who
doubt the consistency of Peano Arithmetic. On the opposite end the strongest
assumptions are studied in set theory as large cardinals. The consistency of
the largest ones is definitely more doubtful than the consistency of Peano
Arithmetic, as at least in one case a proposed seemingly natural cardinal
assumption had to be rejected as inconsistent.

The strong principles are rarely used directly, but we often use them uncon-
sciously. Namely, the fact that no contradiction has been found for a strong
principle strengthens our belief into a weak principle. For instance inaccessi-
ble, Mahlo and even measurable cardinals seem very safe, as no contradiction
has been derived from considerably stronger principle in spite of extensive re-
search. We also use stronger principles to produce “safe extensions” of weaker
principles. We have demonstrated it on the example of the consistency prin-
ciple and the reflection principle. The stronger one, the reflection principle,
enables us to iterate extensions by the consistency. If we are too cautious,
we do not have to accept a priori the reflection principle, but we may allow
some consequences of it, namely, iterated consistencies. The feeling that we
can always progress and make our assumptions stronger does not reflect our
special ability, it is simply caused by the slow gradual decrease in our belief in
their truth. Thus, after all, vagueness is present in our mathematical thinking,
but not in the deduction process, it is in the decision which axioms we should
accept.
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GoÂ¨delâ€™s incompleteness theorems are one of the most remarkable and pro-found discoveries in the 20th century, an important
milestone in the history of modern logic. GoÂ¨delâ€™s incompleteness theorems have wide and profound inuence on the development
of logic, philosophy, mathematics, computer science and other elds, substantially shaping mathematical logic as well as foundations and
philosophy of mathematics after 1931. GoÂ¨delâ€™s incompleteness theorems show certain weaknesses and limitations of one given
formal system. For GoÂ¨del, his incompleteness theorems indicate the creative power of human... In logic, an incompleteness theorem
expresses limitations on provability within a (consistent) formal theory. Most famously it refers to a pair of theorems due to Kurt GÃ¶del;
the first incompleteness theorem says roughly that for any consistent theory. TT.Â  William Lawvere, Diagonal Arguments and Cartesian
Closed Categories, Lecture Notes in Mathematics, 92 (1969), 134-145 (TAC). Yuri Manin, Georg Cantor and his heritage,
arXiv:math/0209244. Noson S. Yanofsky, A Universal Approach to Self-Referential Paradoxes, Incompleteness and Fixed Points,
arXiv:math/0305282 (web).Â  The following contains a careful discussion of the incompleteness theorem in the context of categorical
foundations using the free topos The incompleteness of theories like P (or set theories especially created for the axiomatization of the
whole of mathematics) drastically contradicted the opinions prevailing at that time.Â  In this connection GÂ¨odel notes in his comments
to Theorem VI that, under the conditions of the theorem, it suces to assume instead of (i) that all primitive recursive relations are
decidable 3 (entscheidungsdenit) in the theory T , and instead of (ii) that the set of codes of the axioms of T is decidable in T . This
chapter surveys the use of logic and computational complexity theory in cognitive science. We emphasize in particular the role played by
logic in bridging the gaps between Marrâ€™s three levelsÂ  PudlÃ¡k P (1999) A note on applicability of the incompleteness theorem to
human mind. Ann Pure Appl Logic 96(1â€“3):335â€“342CrossRefGoogle Scholar. 97. Then, the incompleteness theorem of the
previous section takes the form: Diophantine Incompleteness Theorem. Let F be Diophantine-sound.Â  What Frege showed is that the
ordinary reasoning in proofs of mathematical theorems amounts to for-mal manipulations of the propositional connec-tives Â¬ â†’ âˆ¨ âˆ§
together with the quantifiers âˆ€ âˆƒ. Manipulations of the propositional connectives amounts to carrying out the operations of Boolean
algebra. The quantifiers get in the way of this, and careful rules are needed to justify removing and re-instating them. Once these rules
are specified (which can be done in a number of equivalent ways), the way is open to set up formal systems en-capsulating greater or
lesser portions of mathe-matics.


